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ABSTRACT

Pump Impeller and Its Housing. (August 1993)
Nhai The Cao, B.S., Texas A&M University
Chair of Advisory Committee: Dr. Dara Childs

A modified approach to Childs' previous work (1989,1992) on fluid-structure
interaction forces in the leakage path between an impeller shroud and its housing is
presented in this paper. Three governing equations consisting of continuity, path-
momentum, and circumferential-momentum equations were developed to describe the
leakage path inside a pump impeller. Radial displacement perturbations were used to
solve for radial and circumferential force coefficients. In addition, impeller-discharge
pressure disturbances were used to obtain pressure oscillation responses due to
precessing impeller pressure wave pattern. Childs' model was modified from an
incompressible model to a compressible barotropic-fluid model (the density of the
working fluid is a function of the pressure and a constant temperature only). Results
obtained from this model yielded interaction forces for radial and circumferential force
coefficients. Radial and circumferential forces define reaction forces within the
impeller leakage path.

An acoustic model for the same leakage path was also developed. The
convective, Coriolis, and centrifugal acceleration terms are removed from the
compressible model to obtain the acoustics model. The compressible model is
compared with the incompressible model and the acoustic model. A solution due to
impeller discharge pressure disturbances model was also developed for the
compressible and acoustic models. The results from these modifications are used to
determine what effects additional perturbation terms in the compressible model have
on the acoustic model.

The results show that the additional fluid mechanics terms in the compressible



model cause resonances (peaks) in the force coefficient response curves. However,
these peaks only occurred at high values of inlet circumferential velocity ratios,
ue(0)>0.7. The peak pressure oscillation was shown to occur at the wearing ring
seal. Introduction of impeller discharge disturbances with n = 11 diametral nodes
showed that maximum peak pressure oscillations occurred at nondimensional precession
frequencies (f = (Yo where w is the running speed of the pump) of f = 6.4 and f
= 7.8 for this particular pump. Bolleter's results suggest that for peak pressure

oscillations to occur at the wearing ring seal, the nondimensional excitation frequency

~ should be on the order of f = 2.182 for n = 11. The resonances found in this

research do not match the excitation frequenéies predicted by Bolleter. At the
predicted peak excitation frequencies given by Bolleter, the compressible model shows
an attenuation of the pressure oscillations at the seal exit.

The compressibility of the fluid does not have a significant influence on the
model at low values of nondimensional excitation frequency. At high values of
nondimensional frequency, the effects of compressibility become more significant. For
the acoustic analysis, the convective, Coriolis, and centrifugal acceleration terms do
affect the results to a limited extent for precession excitation and to a large extent for

a pressure excitation when the fluid operates at relatively high Mach numbers.
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CHAPTER 1
INTRODUCTION

In the past, wear-ring seals used on the SSME HPFTP (Space Shuttle Main
Engine High Pressure Fuel Turbopump) made frém KEL-F plastic came back after
operation revealing highly unusual characteristics. Despite being in constant contact
with liquid hydrogen, post-test inspection showed that interior points in the stator
element had melted and resolidified. The material used in the seal stator has poor heat
conduction properties and high internal hysteretic damping. Pressure oscillations
adjacent to the seal may be a source of cyclic stress producing hysteretic losses. This
investigation will examine the pressure oscillations which may cause cyclic stresses in
the leakage path between the impeller shroud and its housing. Possible sources of
excitation causing the seal to melt and resolidify will be investigated.

For this project, an analysis will be performed for a bulk flow model of the
leakage path between a pump impeller shroud and a housing along the front side of the
impeller, from inlet to discharge (Fig. 1). Simply defined, a bulk flow model
considers only the average of the velocity distribution across the flow field. The
research will be an extension of analyses performed previously by Childs (1989, 1992)
for a shrouded pump impeller and its housing.

The working fluid will be modelled as a barotropic fluid in this analysis, instead
of an incompressible fluid, to account for fluid compressibility. The density and
viscosity of barotropic fluids depend only on the local pressure and are independent of
temperature. This assumption is reasonable for most cryogenic fluids, where viscosity
is low and effects of viscous heating are negligible. The properties of the working
fluid, i.e., density and viscosity, will be implemented into a new analysis by using a
general 32-term, thermodynamic, equations-of-state program, MIPROPS (McCarty,
1986, modified by San Andres, 1991).

This paper is modelled after the ASME Journal of Tribology.
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Figure 1 - Impeller stage and surface geometry
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CHAPTER II
LITERATURE REVIEW

Childs (1989) performed a bulk-flow analysis for the leakage path between an
impeller shroud and a pump housing. Three governing equations of motion were
derived for a bulk-flow model to represent incompressible fluid flow in the leakage
path of a conventional water pump impeller. Three equations, consisting of a
continuity equation, a path-momentum equation, and a circumferential-momentum
equation, were used to solve for rotordynamic forces due to a precessional excitation
of the rotor.

Childs used a perturbation expansion in the eccentricity ratio of the governing
equations of fluid motion for small motions about a centered impeller position yielding
a set of zeroth and first-order governing equations. A zeroth-order solution was
obtained by an iterative procedure to define the leakage, pressure, and circumferential-
velocity distribution. Using a perturbed clearance function due to a radial displacement
perturbation, Childs evaluated the first-order model at several inlet circumferential
velocity conditions to obtain the first-order perturbed solutions.  First-order
perturbation results provided rotordynamic coefficients (direct and cross-coupled
stiffness, damping, and mass) and lateral reaction forces for the model. Childs’
predictions for the impeller of Fig. 2 are shown in Fig. 3. The predicted radial and
circumferential force coefficients are shown versus the nondimensional precessional
frequency for nondimensionalized inlet circumferential velocities of ue,(0) = 0.5, 0.6,
and 0.7. Nondimensional precessional frequency is the ratio of the impeller precession
frequency, , to its running speed, ®. The graphs showed a considerable "dip", or
resonance, in the radial and circumferential force response coefficients at higher values
of ug(0). The radial and circumferential force coefficients represent the
nondimensionalized reaction forces acting on the impeller face due to impeller
precession. Childs showed that the centrifugal acceleration terms in the momentum

equations produced the "dip" in the results. By removing the
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centrifugal acceleration term from the path-momentum equation, the "dips" in the plots
were eliminated.

Bolleter (1988) presents a relationship between the difference (n) in the number
of impeller blades (n,) and diffuser vanes (n,) and the precessional frequency for
pressure pulsations in an impeller leakage path. Various combinations of impeller
blade and diffuser vane number causing vibrations and pressure pulsations in the
impeller are described. The relationship presented by Bolleter states that a pressure
pattern develops with n = | n, - n, | diametral nodes around the impeller exit. The
precession velocity of the pressure oscillation is nw ,/(l n, - n2|). For example, an
impeller with n, = 11 blades and n, = 6 diffuser vanes would have amplifications of
the pressure oscillations at frequencies of multiples of loe/(11 - 6h=2.20.

Childs (1992) performed an analysis similar to (Childs, 1989) incorporating the
effects of different numbers of impeller blades and diffuser vanes for the bulk flow
model using excitations due to discharge-pressure oscillations instead of orbital motion.
This analysis considered the harmonic response of flow within the annulus due to
variations in the discharge pressure of the impeller. This analysis also compared the
effect on the response of the pressure oscillation due to different numbers of pump
impeller blades and diffuser vanes. Zeroth and first-order perturbation equations were
also derived for this analysis. However, the first order perturbations in this analysis
were excited by discharge-pressure perturbations instead of impeller precession. The
impeller discharge excitation was defined as a precessing harmonic pressure oscillation
with n nodes and a precessional frequency of €.

Results from the analysis due to perturbed flow in the leakage path caused by
oscillations in the impeller discharge pressure show that the peak pressure oscillation
occur near the exit ring seal. The pressure oscillations from the impeller were shown
to depend on the circumferential velocity of the fluid entering the seal, the Fourier
coefficient, n, and the relative closeness to the first resonant frequency of the fluid to
the peak precessional frequency of the rotating pressure field. Note that n represents
both the Fourier coefficient used by Childs and Bolleter's n = ln, -n, L



Acoustic modes are produced by the interaction of fluid inertia and
compressibility. Thompson (1988) explains that the wave equation, the fundamental
equation of acoustics, is obtained by assuming that the convective acceleration terms
are negligible compared with the temporal acceleration terms. For ordinary acoustic
analysis, Thompson states that this assumption is "highly satisfactory" for fluid flow
characterized by a low Mach number, typically M? «0.1. By removing the convective,
Coriolis, and centrifugal acceleration terms from a modified general perturbation
(compressible) version of Childs' model, a similar wave equation can be obtained.
This resulting equation, in theory, can be used for an "acoustic" analysis of the flow
fields.

San Andres (1991) developed a sotution procedure for a model of fluid flow in
turbulent hydrostatic bearings and annular seals operating with cryogenic barotropic
fluids. He used a 32-term equations-of-state program provided by NBS Standard
Reference Data Base for prediction of the properties of LH,, LO,, LN,, and other
fluids at different pressures and temperatures. The code, MIPROPS, delivers fluid
properties which are used in the analysis procedure. In addition to obtaining the fluid
properties from MIPROPS for use in a compressible model, San Andres also
considered the properties of the working fluid as a linear function of pressure. From
his results, San Andres found that for highly compressible fluids, such as liquid
hydrogen, the barotropic properties model based on an equation of state gave accurate

leakage and force response for bearings and seals with a large pressure differential.



CHAPTER III
OBJECTIVES

This research will introduce compressibility of the working fluid in the leakage
path as an extension to the analyses performed by Childs (1989, 1992). The results
will provide information concerning the relationship between an incompressible, a
compressible, and an acoustic model with liquid hydrogen as the working fluid. The
results will also provide information regarding the cause of the unusual behavior
exhibited by the KEL-F plastic rotor element and verify the validity of Thompson’s
assessment concerning the effects of fluid mechanics and acoustics. This research
project will also analyze the effects of the centrifugal acceleration modes and acoustic
modes of a barotropic fluid in the leakage path between a shrouded pump impeller and
its housing.

The results obtained from a compressible-flow model will be compared with
the results of an incompressible model. The compressible-flow model will also be
reduced to an acoustics model, the results of which will be compared to the
compressible-flow model. This comparison will be performed for two different
perturbation excitations: (a) a precessional excitation involving an orbital motion of
the rotor, and (b) a pressure oscillation excitation, involving perturbation of the
discharge or inlet pressure of the leakage path. The geometric and operating
characteristics of the first stage impeller of the SSME HPFTP will provide the
parameters used for the governing equations.

A bulk-flow model will be developed and used to simulate the leakage path
inside the first impeller stage of the Space Shuttle Main Engine Turbopump. Results
from the computation should indicate if any interaction exists between acoustic and
centrifugal acceleration modes, and the influence of fluid mechanics terms (convective,

Coriolis, or centrifugal acceleration terms) on acoustic modes.



CHAPTER IV
GEOMETRIC AND OPERATING CHARACTERISTICS

Figure 4 shows the first-stage impeller of the Space Shuttle Main Engine
Turbopump. The impeller measures 0.3048 m in diameter at the exit (leakage path
inlet) and 0.1905 m in diameter at the seal inlet (leakage path exit). The impeller is
also characterized by 24 impeller blades and 13 diffuser vanes. At full power levels,
this stage operates at 34,000 rpm, with an inlet pressure at the entrance to the leakage
path of 13.79 MPa and a discharge pressure of 1.72 MPa at the exit of the wearing
ring seal. Operating at a pump speed of 34,000 rpm, the resultant velocity vector of
the liquid hydrogen inside the leakage path is calculated to be about 0.4 times the
acoustic velocity of liquid hydrogen.

The wearing ring seal contains four steps, measuring 0.1915, 0.185, 0.1786,
and 0.172 m in diameter, which accommodate four teeth at the end of the impeller
blade. The radial clearances between the seal and the rotor teeth are estimated to be

0.229 mm (0.009 in), accounting for radial expansion of the rotor during operation.



' P inlet =
- M

—

3.79 MPao
3

-

DIMENSIONS IN
MILLIMETERS

PPN

/ 152.4

Leakage path _/
P exit = 1.72 MPa

Wear ring seol

impeller blade

Figure 4 - SSME HPFTP first impeller stage



10

CHAPTER V
BULK FLOW MATHEMATICAL MODEL

Childs’ governing equations will be modified for this project to reflect a bulk
flow model operating with a barotropic fluid. As in Childs’ analysis, these equations
will be nondimensionalized and perturbed to yield zeroth and first-order governing

equations.

5.1 General Governing Equations
Using the approach taken by Childs (1989), the governing equations are:

® Continuity Equation

OeH , 9 19 HoR y - (M
a T asPUH) gaaPUet) * RosPls = 0

® Parth-Momentum Equation

2
op _ . UsdR +pn{au,+av,_u_,,+av,u @)
" wPNZ TR R s

® Circumferential-Momentum Equation

H P Uy oU, Uy U, UsU; oR 3)
- -y U —_
t"‘”*‘”pﬂ( % @R 3 ° R o

R 96

An additional governing equation is obtained by using MIPROPS to obtain the
properties of liquid'hydrogen.
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e Equations of State

4

With the exception of the addition of p to the continuity equation, Eqs. (1-3)
are identical to Childs' (1989). The path and circumferential-momentum equations do
not change from Childs’ model because the density (p) drops out of the momentum
equations when the continuity equation is used to simplify them.

The equations of state in Eq. (4) define the density and viscosity for the bulk-
flow model. The variation in density of the fluid in the model will be implemented by
assuming that the working fluid is barotropic. Here, the variation in density of the
working fluid will be modelled as a function of pressure and a constant temperature
only. In this investigation, the MIPROPS code calculates the value of density and
viscosity at a constant temperature of 23.37 K with varying input pressures, and
returns values of density and viscosity to the main program. The variation of viscosity
with respect to pressure were very slight; therefore, viscosity was kept constant.

H(S, 6, ¢) in the governing equations defines the clearance between the impeller
and the housing. Nondimensionalization of this variable is given in the nomenclature
and also later in this text.

Hir's (1973) definitions were used to define the shear stress components of the
rotor and stator surfaces. The equations shown below define the shear stress acting
on the impeller and its housing. The first subscript in the equations denotes the
direction of fluid flow (path and circumferential), and the second subscript refers to the
surface (stator and rotor), respectively.

ms+l

ns 2 2
Ty = SPURITL+(UJU] > )
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nu’_*l
t, = SPURT(L+[Up-RayUf} 2 ®
ms+1
to = SPUURITL+{UYUY] * )
mr+l
to, = 3 PU{Uy- RaRI{L+[[Uy-RoYUF} 2 ®)

Reynolds' number used in these equations is represented by,

R, = 2HU/Jv 9

Boundary Conditions
The pressure drop of the inlet to the leakage path provides the inlet boundary

condition (s=0) given by the relationship,
P, - Pif0,6,) = p(1 +E)U0,0,0)/2 (10)

The exit wearing-ring seal defines the following exit boundary condition,

P(L8,1)-P,= %c‘,,uf(L,,e,r) (1n

These boundary conditions apply directly for precession excitations.
For the analysis which examines the changes in (i,, uy, p) due to changes in

the impeller's discharge P, or inlet pressure P,, the following boundary conditions are
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stated for the inlet and exit, respectively,

P(6,1) - P(0,8,0) = p(1+E)U0,8.8)/2 (12)
2
P(Ly8:1) - P.(0.1) = 2 Co UL, 0. (13)

Egs. (12-13) differ from Egs. (10-11) because P, and P, are now also functions of

time.

5.2 General Perturbed Equations - Nondimensionalization and Perturbation
Analysis

Introducing the following variables into Eqs. (1-8),

u,=UJV, uy=UfRw, p=PloV;, B=plp,
h=H/C, s=S/L,  r=RR, (14)
T =W, b=V/Rw, T=LJ}V,

yields nondimensional governing equations.
The perturbation variables used to obtain zeroth and first-order equations are
defined by,

U=ugy+eu,, h=h,+eh, p=p,+ep, 15
Ug =Ugg * €lUgy, P =Dy *€P,
where ¢ is the perturbation coefficient to be defined separately below for precession

and discharge-pressure excitation.

5.2.1 Zeroth Order Solution
The zeroth-order equations are the same for the precession and exit-pressure

excitations.
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5.2.1.1 Zeroth-Order Equation
The path and circumferential velocity distribution and the leakage rate for a
centered impeller position are defined by the following zeroth-order governing

equations.

® Continuity Equation
rhgu,py = 1 (16)

® Parh-Momentum Equation

___1_%%5’&2-15:(“;'0} RCALLN 17
Py ds ds rds\ b 2
® Circumferential-Momentum Equation
2 Moo o Yoo dr (18)
_dT+ —;——+[o Algo=T)+0Hg] =0

where

g, = (LS/HO)A'S’ g = (LS/HO)A'r

ms+l

A, = nSRIL+(gg/bug] = (19)

ulr*l
A = nsRg {1 + rybuw]z}
® Equation of State

p=bpT°) 20

Eq. (19) represents friction factor definitions for the stator and rotor surfaces,
respectively, introduced in Eqs. (3-8).
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5.2.1.2 Zeroth-Order Solution
The zeroth-order continuity Eq. (16) can also be expressed as,

du, 1 dh,
“Hs0

s dhy, 1 3B 1dr 21
ds

1
hy ds P ds rds

This equation can be substituted into Eq. (17) to obtain

~ 2
1dpy  2f14dhy 14dpy 1dr ldr(”oo} (0,+0,) , (22)
Bt ) Etri s batsrd miurst Al B Uso

Py ds hyds p,ds rds| rds\'b 2

The governing zeroth-order equations now reduce to two governing equations,
consisting of Eq. (18) and Eq. (22). Eq. (20) defines p solely as a function of p and
provides the density used in Eq. (18) and Eq. (22).

Boun ndition
The inlet boundary condition for the zeroth-order pressure relationship can be
expressed from Eq. (10) as,

P, u2/0)
;140

P40)= 23)

The zeroth-order solutions are obtained by solving Equations (18) and (22)
iteratively. An initial (s=0) fluid velocity V, is estimated which then defines u,(s).
A specified u,(0) and the calculated p, from Eq. (23) are used to numerically integrate
the zeroth-order equations (18) and (22) from the path entrance (s=0), to the path exit
(s=1). The procedure is continued with revised values of V, until convergence is

obtained between the prescribed and the calculated exit pressure.

5.2.1.3 Zeroth-Order Results
The zeroth-order results provide the mass flow rate through the leakage path.
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The discharge coefficient C,, used in this analysis was obtained by using the leakage
rate through the wearing ring seal. The leakage through the wearing ring seal of the
SSME HPFTP was calculated using a seal leakage code developed by Morrison et al.
(1983), and this value was used to calculate the discharge coefficient at specific
impeller operating conditions. The seal leakage code uses the geometry of the seal
and the operating conditions, i.e., inlet and exit pressures, viscosity, density, etc. to
calculate the leakage rate through the seal. Note that this seal leakage code treats the
working fluid as incompressible.

The seal leakage code yielded several mass flow rates for the prescribed
geometry and operating conditions, depending upon the pressure drop across the
impeller and the wearing ring seal. Several discharge coefficients were tested in the
model to match the flow rate through the impeller leakage path and the flow rate
through the seal. Once the two flow rates converged, the resulting C,, was used in
the model as an exit restriction boundary condition. The mass flow rate through the
seal was found to be 1.6373 kg/s, with the resulting C,, being 7039.6, and inlet and
exit pressure of the seal being 8.101 MPa and 1.72 MPa, respectively. This pressure
drop across the seal represents about one third of the total pressure drop across the |
entire impeller leakage path.

Zeroth-order pressure solutions for the incompressible and compressible models
are shown in Figure 5. The nondimensional path velocity along the leakage path is
given in Figure 6, and the zeroth-order circumferential path velocity is shown in
Figure 7. For the incompressible model, a mean value for the density of liquid
hydrogen inside the impeller leakage path was used to obtain the results shown.

The results of the compressible model vary only slightly from the
incompressible model for the zeroth-order solution. The pressure distribution across
the leakage path shows the same trend and approximately the same magnitude of
pressure drop, but not exactly the same inlet and exit pressure values. The C, found
earlier provides the exit restriction for the seal and therefore is used for both models.
Because the incompressible model uses an average density along the leakage path, the

inlet and exit densities for the two models will be slightly different. This accounts for
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the difference in the dimensionless pressure magnitudes shown in Figure 5. The
dimensional pressures at the inlet are almost exactly the same value, confirming the
inlet boundary condition. As shown in Figure 6 and Figure 7, the zeroth-order path
velocity and the zeroth-order circumferential velocity are not affected significantly by

compressibility.

5.2.2 First-Order Equations

First-order governing equations define the path and circumferential velocity and
pressure distribution along the leakage path due to perturbed clearance function or
perturbed discharge-pressure.

First-order perturbation equations obtained by the perturbation expansion of Eq.
(14) are

® Continuiry Equation

_ oh ap p _ Ou oh,
Poa‘ 0 arl r[ eoho = +hopg agn +u°°p°66]

1 | AP Polsifte) AP UM 1 dr i
Tw{a( 065 ‘)+a( 8: +6( las 0) (0P ol + 8 Polty + UsoP 1) =0

Tw rds'
(24)

® Parh-Momentum Equarion

1 ap] -
‘aT"g U Ap *U At PAGt

® Circumferential-Momentum Equation

bL; op,
rR .90

L T2

*lUgAg* UgAygt PrA,t

Olig,
Tw
dt raﬁ
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® Equation of State

9p, =dﬁ16pl 99, =d518p1 9p, =df)lapl
os dp &' o8t dp ot’ 96 dp 8

@7

With the exceptions of A,, and A,,, which are defined in the appendix, the parameters
A,,, A,, etc., in these equations can be found in Childs (1989).

The dependency of 5 with respect to s, 7, and 8 in Eq. (24-26) are eliminated
from the governing equations by applying the definitions of Eq. (27). The relationship
between 5 and p in Eq. (27) was obtained from the results produced by MIPROPS.
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CHAPTER VI
FIRST ORDER EQUATIONS AND SOLUTIONS FOR GENERAL
PERTURBED COMPRESSIBLE MODELS

This chapter provides the first order equations and solutions for precession
excitation and pressure excitation cases for the general perturbation (compressible)
models. Results for both excitation cases are presented using an inlet tangential
velocity of u,(0) = 0.7. The radial and circumferential-force coefficient response
curves represent the nondimensional reaction force acting on the impeller face in the
respective directions versus nondimensional frequency ratio, f.

For the first-order solution analysis, a separation of variable approach was used
to obtain complex ordinary differential equations. The resulting coupled equations
were integrated to obtain the nondimensional radial and circumferential force response
coefficients. The calculated results from the first-order precession excitation and the
pressure excitation of the general perturbed bulk flow model provide predictions which
can be used to qualify and quantify the effects of fluid compressibility in the model.

6.1 Precession Excitation: General-Perturbation Model
The precession excitation of the general perturbed model uses the perturbed

clearance function,

eh, =h, (s,t)cos0 +h, (s,7)sin@ (28)

as the excitation.
The theta dependency of Eqs. (24-26) can be eliminated by substituting the

following solution format

slc

u,, =, cosd +u , sind Ug, = Ug, COSO + Uy, SN 29)
b, =pu.0086 +pusin6 5l=ﬁ1cc°se+§usine

into Egs. (24-26), which yields six real equations.



23

Three complex equations in the independent variables s and 1 can be obtained

by introducing the complex variables

u,] SUgpe YU um =Ug)c t g1 9-1 =P Py

. (30)
pl =plc +jpl:’ hl =hlc +Jhls
These complex equations in the independent variables s and t are
au"-M + lah +_l_%.+lar -E%JQ_T“
a r % sha  poas  ros| Uprads o pg ™
oT 9, B ug%B,  fuydhy oT, | oT% ug
Bo dp, Ot po ds '|h2as hy | hy Ot hy 3
(31)
1%, K. 32
FE‘”‘B‘A ”4,‘43;"'9-‘4 +[ a;]_hA (32)
bL R Otty, Oty (33)
-7-E?+ 1A2°+EIA3°+D‘A +[Tm -’T"’_“m"uw_ = lAle

Since the equation of state is a function of pressure and a constant temperature only,
it can be modified as shown in Eq. (27) and used to remove the dependency of §, from
s in Eq. (31). Further simplification of Eqs.(33-35) can be made by using the
following definitions provided by Childs (1989)

__|L)dz
ehl = ‘{f]z (34)

O _,,(L]i’s (35)
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where

q=x+jy (36)

Eq. (36) represents the physical motion of the rotor in the x and y directions, shown
in Figure 1.

Assuming a harmonic seal motion of the form
g=q,%, f=0Qlo (37N
the corresponding harmonic solutions can be stated,
B, =uge’, uy =ugel, p, =peff (38)

which yields the following three complex ordinary differential equations of motion,

d)- -\ _9 39)
— Ut + U r=|—1% 8
I _ex “ _an (e] 2
Dy P &
where
A 9T 4 Gt dbo JoTho| ;g0
r dskﬁg ds Py
W) - Az A T 4, P oL “0)
Upg Uyp U “ds 7 rugboR,
A, Ay, dp,
4, Ay —.‘5‘—.373—
| Po Po
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U, dp,

TTd
~___G +F, +j——
8 Podp, ! : hy ds
L
&t = (__] < _ dzAxe L 41)
Ls —_—
g ds uy,
L G‘I

Elements used in Eqs. (40-41) can be found in Appendix A.

6.1.1 Boundary Conditions

Nondimensional first-order boundary conditions for the precession excitation can

be stated from equations (10) and (11) as

P,(0) (1B
404 = ~(1+8u,(0) 42)
[+ r

p,(1 -

20 =Cottd1u,(1) 43)

(1+.§_.21+E .d_5| )
2 dp'!

Additionally, the perturbation entrance circumferential velocity can be stated as zero,
Ug,(0)=0 (44)

The solution to this set of equations is obtained by applying the procedure
presented by Childs (1989). The solution procedure used to determine the reaction
forces and moments are also given by Childs (1989).

6.1.2 First-Order Results
Radial and circumferential force response coefficients for general compressible
and incompressible precession excitation models operating with an inlet circumferential

velocity of ue(0) = 0.7 are shown in Figure 8 and Figure 9. The results
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show that the effects of compressibility do not affect the results of the model to a
great extent over the frequency range considered. As with Childs’ results, local
resonance peaks occur in the response curves. Two local peaks occur in the response
curves, at nondimensional frequency ratios of f = 0.1 and f = 0.8. For low inlet
values of circumferential velocity u,(0) = 0.5, the behavior of the response curves
of the compressible model is virtually the same as the results shown for an
incompressible model shown by Childs (1989), i.e., the resonance in the response
curves diminish at lower values of inlet circumferential velocity.

Complex first-order pressure, path velocity, and circumferential velocity for
different nondimensional excitation frequencies along the leakage path produced from
the first-order perturbation analysis provide approximate complex modes at the
resonant frequencies. The real and imaginary parts of these results are used to obtain
amplitude and phase plots at the resonant frequencies. Amplitude and phase plots of
first-order nondimensional pressure in the leakage path at the frequency ratios of f =
0.1 and f = 0.8, where the local peaks occur, are shown in Figures 10 and 11.
Complex modes for u,, at the same frequency ratios are shown in Figures 12 and 13.

At the frequency ratio of f = 0.1, the amplitude of the pressure along the
leakage path steadily increases and has a maximum value at the exit of the leakage
path. For the frequency ratio of f = 0.8, the maximum pressure amplitude occurs
near the middle of the leakage path. The mode shape for u,, at f = 0.1 shows a
slightly decreasing amplitude along the leakage path, with a minor increase in the
amplitude at the exit. As with the mode shape for the pressure distribution at f =
0.8, the maximum magnitude occurs near the middle of the seal.

As with Childs’ model, the resonant peaks found in this analysis can be
attributed to the centrifugal acceleration terms. When the centrifugal acceleration
terms are removed from the model, the local peaks in the response curves diminish
significantly. The mode shapes at f = 0.8 do not support the theory that maximum
pressure oscillations at the leakage path exit are causing the seal to melt because the

maximum amplification occurs near the middle of the leakage path. - -
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Figure 10 - Amplitude and phase plot of nondimensional pressure p for precessional
excitation of compressible model at f = 0.1
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Figure 13 - Amplitude and phase plot for precessional excitation for path velocity u,,
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Noticeable effects of compressibility upon the model can be seen at higher
nondimensional frequency ratios. Figure 14 shows the response curves of the
compressible and incompressible models for high frequency ratios. The force
responses of the incompressible model continue to grow with increasing f, while the
results of the compressible model exhibit peaks corresponding to the natural
frequency. This is consistent with classical vibration analysis, with the incompressible
model having no natural frequency due to an infinitely high bulk modulus, while the
compressible model has a natural frequency corresponding to the compressibility of

liquid hydrogen in the model.

6.2 Pressure Excitation

This part of the research involves introducing a time and circumferentially
varying impeller discharge pressure to the compressible model. With different
excitations involved in this model, new boundary conditions also exist. The pressure
perturbation takes the form of the following equation.

® Supply Pressure-Excitation Perturbation

P0,f)= P ,+€P, (8,) @5)

The occurrence of epsilon in this equation represents the perturbation coefficient for

discharge-pressure excitation.

6.2.1 First-Order Equations

Nondimensionalization and perturbation of the general governing equations (6-
8) yields the same governing equations for pressure excitation perturbation as for
precession excitation governing Egs. (31-33), except with h, = 0 for this model.
Therefore, the first-order governing equations for pressure excitation will not be

presented in this section. _
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6.2.2 Boundary Conditions

Nondimensionalization and perturbation of the boundary conditions introduced

in Eq. (12-13), the first-order boundary condition can be stated as

P8, -p,0,6,0)=(1 +g)uﬂ(0,e,,)(l L(1+8)dp |o)

2 d
i @)
1+8)dp
p(1,6,5)-p,(6,0) = Cdeuw(l)uﬂ(l,e,t)(l +(_2Q?£ Il)
P
p.1(8,2), p.,(8,t) provide the boundary excitations and take the form,
P,(8:1) =/%(p,, cosnb +p,, sinn) @

p.,0,0) =e/%(p,, cosnb +p,, sinnb)

6.2.3 First Order Solution
The theta and time dependency of the first-order pressure excitation governing

equations is eliminated by assuming

U, = e (u , cosnb + u  sinnf)

gy = e ug, cOSNO + 4, sinnb) 48
p, = (p, cosnd +p, sinnb)

where n represents the difference of number of impeller blades and vanes, also defined
as the number of diametral nodes (Bolleter). Substitution of Eqs. (48) into the first-
order pressure excitation governing equations, equating coefficients of cos nf and sin
n, and using complex variables described in Eq. (30) reduces the real equations to

three, complex ordinary differential equations

&

sl usl
d)- _
P Ug, [ +[B(S,S) Ugy (=0 “49)

p, 51
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where
; dp.(udp, jnwTu dp
B, -Jan'sz - Pg( soPo +J m 2 J”“’Tﬂ‘“Bts
r dsk 53:1; ol ds
[B] = Ay Ay JTT A dbg -j bL, (50)
Uy By Hy “ds T ruypoR,
A 5 dp
B B —=- .—3—-2
3 32 p p ds

Eq. (49) differs from Eq. (40) in that Eq. (49) is now a function of n with &, = 0.
These equations are solved using the method presented by Childs (1992).

6.2.4 Eirst-Order Results

Results from the pressure excitation perturbation analysis using a difference of
1mpeller blades and vanes (n) 1s presented in thlS section. Smce the SSME HPFTP
wearing-ring seal is located at the end of the leakage path (s = 1), the results from
this section will concentrate on this area of the leakage path 'l"he pressure-oscxllatxon
response at the end of the leakage path versus nondimensional excitation frequency
corresponding for n = 11 is illustrated in Figure 15. The value of n = 11 is used
because, as mentioned previously, the SSME HPFTP has 24 impeller blades and 13
diffuser vanes, for a difference of 11. Bolleter (1988) explains that the dominant
pressure pattern to be expected for this arrangement would have 11 diametral nodes.
This is important because it is the value used as n in Eq. (48). Figure 15 shows that
the peak pressure oscillation at the exit of the impeller leakage path (s = 1) occurs at
a nondimensional frequency of about f = 6.4 and f = 7.8. Bolleter predicts that the
peak pressure oscillation should occur as a function of the difference in the number

of impeller blades and vanes, presented in Tables 1 and 2.
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The resonant frequency ratios at f = 6.5 and f = 7.8 clearly are not functions

near the predicted excitation frequencies provided in Table 2 for n = 11. None of the

other cases tested yielded results which correspond to the values shown in Table 2 for

the respective value of n. These results reveal that amplification of peak pressure

oscillation does not occur at the expected frequency ratio. At the predicted frequency

ratios, the cases tested for this model showed that an attenuation, rather than an

amplification of the pressure waves occurred.

Table 1 - (n, - n,) for various combinations of multiples of impeller blades and vanes

nz\ n, 24 48 %96
13 11 35 83
26 -2 22 70
39 -15 9 57

Table 2 - Expected peak nondimensional frequency ratios, f or, {n/(n, - ny)}, for

various combinations of multiples of impeller blades and vanes

nz\ n, 24 48 96
13 2.18 1.37 1.16
26 -12.00 2.18 1.37
39 -1.60 5.33 1.68

Amplitude and phase plots (Figures 16 and 17) of the pressure oscillation for

the two resonant frequency ratios found for n for the compressible pressure excitation

model show that the peak pressure oscillation occurs at the exit of the leakage path.

This result helps to support the hypothesis that pressure oscillations at the leakage path
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exit are causing the seal to melt. However, the result does not provide enough
evidence to provide a very plausible explanation for the behavior exhibited by the
wearing ring seal.

The response of the compressible model for other values of n is plotted in
Figure 18. The graph shows the relationship of the peak pressure oscillation response
to the number of diametral nodes. The nondimensional excitation frequency ratio at
which the peak pressure oscillation occurs increases as the number of diametral nodes
increase, consistent with Childs’ analysis (1992). However, unlike Childs’ results,
where the magnitude of the peak amplitude stays relatively constant, regardless of n,
the results produced from the compressible model show that the amplitude of the
pressure oscillations increases as n increases. The effects of added compressibility to
the results of this model is greatly enhanced compared to results of the precession
excitation model. But, as with the precession excitation analysis, the influence due to

compressibility effects is only noticeable at higher nondimensional frequencies.
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Figure 18 - Pressure oscillation response for pressure oscﬂlatlon of compressible
model with multiple n and u,,(0) = 0.7
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CHAPTER VII
FIRST ORDER EQUATIONS AND SOLUTIONS FOR ACOUSTIC MODELS

For acoustics analysis, the temporal acceleration terms are the only acceleration
terms which remain from the set of general governing equations. A highly reasonable
assumption may be made that the contributions from the convective, Coriolis, and
centrifugal acceleration terms are negligible compared to the temporal acceleration
terms in the realm of ordinary acoustics (M? « 1) (Thompson, 1988). However, due
to the high Mach number with which the working fluid in the SSME HPFTP operates
(M = 0.4), the general perturbétion fluid model and the acoustic model must be
compared to investigate the effects of the convective, Coriolis, and centrifugal
acceleration terms in an acoustic analysis.

The zeroth-order solution for the acoustics models do not change from the
previous results obtained because the zeroth-order equations and solution remain the

same .

7.1 Precession Excitation Model

7.1.1 First Order Equations

First-order governing equations for the acoustic precession excitation model can
be obtained by removing the effects of fluid mechanics, i.e., the convective, the
Coriolis, and the centrifugal acceleration terms from the general perturbation governing
equations given in 5.2.2, Egs. (24-26). Removing the convective acceleration terms,
usdus/ds udu/ds, the Coriolis acceleration term, 2u,r/rds, and Quedr/(brds),
representing centrifugal acceleration, from the continuity Eq. (24) yields the first-order
governing acoustic continuity governing Eq. (51). The first-order governing acoustic
equations for the path and circumferential momentum are obtained by removing the

convective acceleration terms from Egs. (25-26).
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® Conrinuity Equation

5 %+h 9B, L [h a(ﬁouw)+u AP oho) 5 Ht0ho) -0 (51)
%3¢ %ot To|' & st s 'oos
® Parh-Momentum Equation
1 dp, - du,, ,
ﬁ_o_as_ +umA2‘ +uSrA3‘+plA“+Tw a: =hlALT (52)
® Circumferential-Momentum Equation
b L, op, . Oug,
7 Rigosé— * lUgAyg t UgAgg PlAw‘”T‘*’? =hAq (53)

7.1.2 First-Order Precession Excitation Solution

The theta dependency of Eqgs. (51-53) can be eliminated by substituting the
solution format presented in Eq. (29). The three resulting complex equations in the
independent variables s and 7 after introducing the complex variables of Eq. (32) are

® Continuity Equation

ou ; o
ot JjoT, o L%, 1|, ke, T,
Os r shhyds pg o 12 os h (54)
.5 jw—Tu 4o 0Py| w9, ﬁahl wT 98, dp,
Bl O 2 5| hy Ot hy & Py dp, Ot

® Path-Momentum Equation

o ou,
ﬁoalS +uelA2'+u:f43l+ﬁ'xA0+Tw atl =hlAu (55)
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® Circumferential-Momentum Equation

bL 2 au'ﬁl _
- 77‘5_ U Ayt AsptB Ayt Tw_ar =hA, (56)
i o

Assuming the harmonic seal motion described in section 6.1, Eq. (38), the three

governing equations reduce to two differential equations of motion of the form,

ey 0@

where

= t)— :
{87 i [L] ) po dp ! hyds ™ T (Ay *J“’lﬁ} (58)
8 L, G - A A

The [C] matrix elements are given in Appendix C.
The du,,/ds term has dropped from the governing equations and thus u,, can

be solved directly without integrating the partial differential equations, yielding,

b L, dp :
Ug, =[h1‘419 “UgAsg t"‘ - —d;o“‘te]ﬁ]/ {Ag +j0T)) (59)

r Ripg

Results to these equations are obtained using the same solution procedure and
boundary conditions described for the first-order precession excitation equations in
section 6.2.2. The solution to these sets of equations can then be used to calculate the
force and moment coefficients in the impeller leakage path for the acoustic case where

classical acoustic assumptions are made.

&2
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7.1.3 First-Order Results

The nondimensional radial force coefficient responses for the general
perturbation and acoustic cases are shown in Figure 19. The response curves for the
circumferential force coefficients are shown in Figure 20. The response curves for
the acoustic case are less erratic in behavior, and the peaks exhibited by the
compressible model totally disappear. This shows that the convective, Coriolis, and
centrifugal acceleration terms do affect the results of the compressible model to a
considerable extent at low frequencies. Childs (1989) correctly predicted that the
centrifugal acceleration terms caused the resonance in the response curve. Although
the results of the two models do not differ quantitatively, the trend exhibited by both
models are similar, as evidenced by Figures 20 and 21.

At higher values of nondimensional frequency, the effects of removing the fluid
mechanics terms from the model is shown in Figure (21). The two models show
about the same results. The natural frequency of the acoustic model is slightly lower
and the peaks are slightly higher. Mode shapes for pressure oscillations at f = 11.5
and f = 12 are shown in Figures 22 and 23. The mode shapes show that, at these
frequencies, the pressure oscillations are not the cause of the uncharacteristic behavior
of the exit wearing ring seal due to a precession excitation. The mode shapes do not

show conclusively that the pressure oscillations are occurring at the exit of the seal.

7.2 Pressure Excitation Model

7.2.1 Eirst-Order Equations

The equations obtained for the first-order acoustic pressure excitation
perturbation use the same procedure as for the first-order acoustic precession
excitation shown in section 7.1.1. The boundary conditions and perturbation
excitation are defined by the equations used for the general first-order pressure
excitation solution given in section 6.2. The resulting governing equations for
pressure excitation of the acoustic model are the same as those given in section 7.1.1,
except with h, being zero, analogous with the results obtained for the pressure

excitation equations for the general perturbation model.
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Figure 20 - Circumferential force response for acoustic and compressible models for
precessional excitation for u,/(0) = 0.7
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Figure 24 - Acoustic response for impeller discharge pressure excitation for n = 11

for u,(0) = 0.7
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7.2.2 First-Order Pressure Excitation Solution
Using Eq. (48) to eliminate the theta and time dependency from the first-order
pressure excitation of the acoustic model and using the pressure excitation perturbation

described in Eq. (45), the resulting governing equations can be represented as,

u u
4oy =0 (60)
ds|p, P
Where elements of [D] are provided in Appendix D.
In addition to h, being zero, Eq. (60) also is a function of n, unlike Eq. (57).

7.2.3 First-Order Results

Comparison of the general perturbation model and the acoustic model for n=11
shows that the peak pressure amplification around f = 7.8 displayed by the general
perturbation mode! almost totally disappears for the acoustics model. From Figure 24,
the results for the acoustics model show that no amplification of the pressure
oscillation occurs, but rather, an attenuation of the pressure oscillation at all frequency
ratios. It can be concluded from this result that the convective, Coriolis, and
centrifugal acceleration terms contribute significantly to the results of a bulk flow
model when a pressure excitation is used as the perturbation parameter of the bulk
flow model. The results here also differ with respect to the location of the resonant
peaks in the nondimensional frequency range tested. For the acoustic model, the local
peaks do not match with those of the compressible model.

The sharp peak of the pressure amplitude near a frequency ratio of f = 0.0 is
inherent in all the models (compressible, incompressible, and acoustic), shown in
Figure 25. The phenomenon causing this resonant excitation is not yet understood and
cannot be explained. However, the fact that this resonance occurs in all three models
explains that neither the compressibility or the acoustics effects of the models affects
this resonant frequency. Also, the fact that the frequency at which resonance occurs

is near f = 0.0, indicates that this peak could be the response to a free vibration of
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the fluid inside the leakage path.

Figure 26 shows the first-order pressure response for multiple cases of n. The
frequency responses due to different n show no quantitative trend with respect to n.
Unlike the compressible model, where the pressure response showed a definite,
noticeable response to different n, the acoustic model shows little quantitative and

qualitative response to different n value.
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CHAPTER VIII
SUMMARY AND CONCLUSIONS

A modified approach to Childs' previous work (1989,1992) on fluid-structure
interaction forces in the leakage path between an impeller shroud and its housing is
presented in this thesis. Three governing equations consisting of a continuity, path-
momentum, and circumferential-momentum equations were developed to describe the
leakage path inside a pump impeller. Radial displacement perturbations were used to
solve for radial and circumferential force coefficients. In addition, impeller-discharge
pressure disturbances were used to obtain pressure oscillation responses due to
precessing impeller pressure wave pattern. Childs' model was modified from an
incompressible model to a compressible barotropic-fluid model (the density of the
working fluid is a function of the pressure and a constant temperature only). Results
obtained from this model yielded interaction forces for radial and circumferential force
coefficients. Radial and circumferential forces define reaction forces within the
impeller leakage path.

An acoustic model for the same leakage path was also developed. The
convective, Coriolis, and centrifugal acceleration terms are removed from the
compressible model to obtain the acoustics model. The compressible model is
compared with the incompressible model and the acoustic model. A solution due to
impeller discharge pressure disturbances mddel was also developed for the
compressible and acoustic models. The results from these modifications are used to
determine what effects additional perturbation terms in the compressible model have
on the acoustic model.

The results show that the additional fluid mechanics terms in the compressible
model do cause resonances (peaks) in the force coefficient response curves. However,
these peaks only occurred at high values of inlet circumferential velocity ratios. The
peak pressure oscillation was shown to occur at the wearing ring seal. Introduction of

impeller discharge disturbances with n diametral nodes showed that maximum peak



58

pressure oscillations occurred at nondimensional excitation frequencies of f = 6.4 and
f = 7.8 for this particular pump. Bolleter’s results suggest that for peak pressure
oscillations to occur at the wearing ring seal, the nondimensional excitation frequency
should be on the order of f = 2.182 for n = 11. The resonances found in this
research do not match those predicted by Bolleter. At the predicted frequencies given
by Bolleter, the compressible model shows an attenuation of the pressure oscillations
at the seal exit. This does not provide a plausible explanation for the unusual behavior
exhibited by the wearing ring seal.

The compressibility of the fluid does not have a significant influence on the
model at low values of nondimensional frequency. At high values of nondimensional
frequency, the effects of 7com'pr'e'ssibi1ity become more signiﬁczrm't'. For the acoustic
analysis, the convective, Coriolis, and centrifugal acceleration terms do affect the
results to a limited extent for a precession excitation and a large extent for a pressure

excitation when the fluid operates at relatively high mach numbers.
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APPENDIX A
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Coefficient definitions for [A] Eq. (40)
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APPENDIX B

Coefficient definitions for [B] of Eq. (50)

dhy dpy dr dpy 1
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APPENDIX C

Coefficient definitions for [C] of Eq. (57)

1dh, 1 4By Aue’T¥ Hatn0T) (C.1)
! h ds Po df - TAg rAg,
\ A
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APPENDIX D

Coefficient definitions for [D] of Eq. (60)
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